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During the collapse of an initially spherical cavitation bubble near a rigid wall, a re- 
entrant jet forms from the side of the bubble farthest from the wall. This re-entrant jet 
impacts and penetrates the bubble surface closest to the wall during the final stage of 
the collapse. In the present paper, this phenomenon is modelled with potential flow 
theory, and a numerical approach based on conventional and hypersingular boundary 
integral equations is presented. The method allows for the continuous simulation of the 
bubble motion from growth to collapse and the impact and penetration of the re- 
entrant jet. The numerical investigations show that during penetration the bubble 
surface is transformed to a ring bubble that is smoothly attached to a vortex sheet. The 
velocity of the tip of the re-entrant jet is always directed toward the wall during 
penetration with a speed less than its speed before impact. A high-pressure region is 
created around the penetration interface. Theoretical analysis and numerical results 
show that the liquid-liquid impact causes a loss in the kinetic energy of the flow field. 
Variations in the initial distance from the bubble centre to the wall are found to cause 
large changes in the details of the flow field. No existing experimental data are available 
to make a direct comparison with the numerical predictions. However, the results 
obtained in this study agree qualitatively with experimental observations. 

1. Introduction 
Cavitation is an important engineering phenomenon that commonly occurs in fluid 

machinery, piping systems, liquid jets and a variety of boundary-layer flows. The major 
harmful effects of cavitation are erosion, noise and decrease in fluid-machinery 
efficiency (Hammitt 1980; Arndt 1981). In an effort to understand the fundamental 
physics of cavitation phenomena, a number of researchers have investigated the growth 
and collapse of individual bubbles near rigid boundaries. Experiments have been 
performed by Benjamin & Ellis (1966); Gibson (1968); Lauterborn & Bolle (1975); 
Chahine (1979, 1982); Gibson & Blake (1982); Tomita & Shima (1986); and Vogel, 
Lauterborn & Timm (1989). Using spark-generated or laser-generated cavitation 
bubbles and high-speed photographs it was found that, once generated, the bubble 
grows to a maximum size, and then starts to collapse, inducing a radial flow directed 
toward the bubble centroid. As the collapse proceeds, the surface of the bubble farthest 
from the wall moves much faster than the surface closer to the wall. This asymmetric 
motion creates a wall-directed re-entrant jet as the volume of the bubble decreases. 
Eventually, a liquid-liquid impact occurs between the front of the re-entrant jet and the 
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opposite side of the bubble. During this impact process, the jet penetrates the slower- 
moving fluid close to the wall. 

Numerous theoretical and numerical studies of an individual bubble collapsing near 
a rigid boundary have also been made (see review articles by Prosperetti 1982; Blake 
& Gibson 1987). Because the available theoretical analysis is limited to asymptotic 
studies in which the deformation of the bubble is confined to a small perturbation 
range (Chahine 1982), numerical simulation has become an important tool for 
investigating the detailed physics of this phenomenon. Using a finite-difference 
approach, Plesset & Chapman (1971) conducted the first fully numerical study. Later, 
Mitchell & Hammitt (1973) used a modified Marker-and-Cell method to simulate 
similar cases. An approximate integral-equation approach was introduced by Bevir & 
Fielding (1974). In this work, sources and doublets were distributed along the axis of 
symmetry inside the bubble. Though this method requires less computational effort 
than the finite-difference method, it failed to simulate the formation of the re-entrant 
jet. Gibson & Blake (1980) and Blake & Gibson (1981) modified this method to study 
the bubble collapse near a rigid wall and a free surface. Based on Green’s theorem and 
the direct boundary-integral approach, more detailed studies of cavitation bubbles 
near rigid boundaries have been presented by Guerri, Lucca & Prosperetti (1981); 
Cerone & Blake (1984); and Blake, Taib & Doherty (1986) for axisymmetric cases and 
by Chahine & Perdue (1988) and Chahine (1991) for three-dimensional cases. The 
numerical calculations of the migration of the bubble toward the rigid wall, the profiles 
of the bubble and the formation of the re-entrant jet were found to be in excellent 
agreement with experimental observations (Blake et al. 1986). 

Once the re-entrant jet begins to penetrate the opposite side of the bubble, difficulties 
in experiments, theory and numerical calculations appear. Most experiments use 
photographs to track the bubble surface. Unfortunately, the jet impact process occurs 
inside a toroidal bubble and the images are consequently blurred and difficult to 
interpret. Theoretical analysis of the jet impact and penetration process is difficult 
because of the nonlinearity associated with the large motions of the bubble surface. 
Benjamin & Ellis (1966) postulated that upon jet impact the bubble must be 
transformed into a vortex ring bubble in order to conserve the Kelvin impulse of the 
flow. Several attempts have been made to simulate the jet impact and penetration 
processes numerically. Rogers et al. (1990) and Szymczak et al. (1993) have assumed 
an inviscid incompressible flow and used a finite-difference field approach. They 
demonstrated the capabilities of the method by simulating a single bubble collapse near 
a rigid wall including the impact of the re-entrant jet. Owing to limits in computing 
time and memory, the calculation was done at low resolution. It was therefore difficult 
to resolve the impact interface and there was a non-physical energy loss before impact. 
Attempts to use the direct boundary element method without modification to simulate 
the penetration process have failed. The failure is due to the inherent mathematical 
degeneracy of the conventional integral equation under this circumstance. In an effort 
to avoid this degeneracy problem, Best (1993) devised a two-phase procedure to carry 
out the calculations with the conventional boundary integral equation. The first phase 
includes the growth and collapse of the bubble up to the point in time when the north 
and the south poles of the bubble meet. Then, in the second phase, a ring bubble is 
assumed with a continuous velocity field everywhere in the fluid. The initial conditions 
for the ring bubble problem are based on the fluid motion just before impact and some 
ad hoc assumptions about the geometry of the ring bubble and the fluid velocity in the 
vicinity of the impact surfaces. The entire impact process occurs instantaneously in this 
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model. A similar two-phase method with a boundary integral approach was also 
reported by Lundgren & Mansour (1991) for the simulation of a vortex ring bubble. 

In the present paper, the physics of cavitation bubbles is studied with a new 
boundary-integral technique that can compute the growth and collapse of the bubble 
including the impact and penetration of the re-entrant jet. This method allows for a 
continuous liquid-liquid impact as the two curved sides of the bubble collide, the 
penetration of the re-entrant jet into the fluid close to the wall and the formation of a 
shear layer along the impact interface. The physical and mathematical modelling of 
these processes is presented in $2. This modelling uses modified conventional and 
hypersingular boundary integral equations with non-regular boundaries to form a 
well-posed problem for times before and during jet impact and penetration. The details 
of the numerical scheme are discussed in $ 3 .  This scheme is verified and tested in $4 
by computing static and dynamic problems with known solutions. The results of 
simulations are presented in $5.  These results include velocity and pressure fields and 
bubble profiles. Calculations showing changes in the circulation and energy of the flow 
during jet impact and penetration are also computed and discussed in this section. The 
concluding remarks of this study are given in $6. 

2. Mathematical formulation 
2.1. Physical assumptions, dejnitions and coordinates 

In the present paper, as well as numerous previously published studies of bubble 
collapse, the fluid motion is treated by potential theory. Viscous effects are neglected 
on the grounds that the timescale for viscous diffusion is much longer than the timesale 
for the collapse. Thus, the vorticity generated at the boundaries does not have sufficient 
time to diffuse into the flow. The extension of these studies to include the penetration 
phase of the motion does not alter this conclusion. In studies of bubble collapse before 
jet impact, the assumption of incompressibility has been made based on the idea that 
only a small fraction of the energy of the bubble motion is radiated away as sound. In 
the present case, the jet impact will cause an increase in the radiated sound; however, 
it will be shown that the potential flow model allows for the loss of energy due to 
impact. Surface tension effects are also neglected in the present calculations. Though 
the influence of surface tension grows as the bubble volume becomes very small, it has 
been shown that the inertia and pressure terms are still dominant (Hammitt 1980). 

Profiles of a cavitation bubble just before the impact of the re-entrant jet and at a 
time later in the evolution of the bubble are shown in figures 1 (a) and 1 (b), respectively. 
These profiles are from the results of the present numerical model. From figure 1 (a), 
it can be seen that the radius of curvature at the north pole (N,, defined as the point 
on the bubble axis that is farthest from the wall) is less than the radius of curvature at 
the south pole, S,. Thus, the jet impact process begins with impact at a single point. 
This instant in time is defined as the initial impact. As the process continues, more and 
more of the two surfaces impact in a continuous manner and the bubble volume 
decreases. The fluid that was originally above the bubble in the figure penetrates into 
the fluid that is below the bubble creating the profile as shown in figure 1 (b). In a real 
flow, the interface between the fluid from above and below the bubble (called the 
impact or penetration interface in this paper) contains a mixture of gas, vapour and 
micro-bubbles, and a local shear layer is generated with the fluid in the jet moving 
toward the wall and the fluid outside the jet moving away from the wall. In the present 
potential flow approximation, the penetration interface is represented as a sheet with 
infinitesimal thickness. This sheet has the properties of a vortex sheet in that the 
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FIGURE 1 .  A cylindrical coordinate system and two axisymmetric bubble profiles corresponding to 
stages (a) before and (b) after penetration. The profiles have been separated vertically for clarity. S, 
represents a regular surface, S+ and S- comprise a common surface which is connected to S, at the 
triple point T, and S, denotes an infinite rigid wall. N ,  and S,  are respectively the north and south 
poles on the bubble surface. 

pressure and normal velocities of the fluid are required to be continuous across the 
sheet while the tangential velocities are allowed to be discontinuous. The remainder of 
the bubble is toroidal in shape and is called a ring bubble. The circular line at which 
the vortex sheet attaches to the ring bubble is called the triple-point line and its 
intersection with the plane of the paper is denoted by the point Tin figure 1 (b). In the 
experiments, the ring-bubble contains some non-condensible gas which will cause the 
bubble to grow again after reaching a minimum volume. In the present model, the 
pressure in the bubble is assumed to be constant, therefore rebound will not occur. 
Current efforts are being directed toward simulating the rebound process with a 
volume-dependent pressure inside the bubble. 

A cylindrical coordinate system is used to describe the motion of the fluid and bubble 
surface, with r ,  0 and z representing the radial, circumferential and axial coordinates, 
respectively. The fluid motion is assumed to be axisymmetric. A rigid wall is located 
in the plane z = 0 and extends to infinity. The pressure in the fluid far from the bubble, 
P,, is maintained constant as is the pressure in the bubble, 4. Before initial impact, the 
bubble surface, as shown in figure 1 (a), is entirely a regular surface (Kellogg 1953) and 
the fluid domain, D, is a simply connected region bounded by the bubble surface, S,, 
the rigid wall, S,, and an imaginary boundary at infinity, S,. After initial impact, S, 
is transformed into an irregular surface as shown in figure 1 (b). This surface consists 
of two different regions : a common surface region which comprises the two surfaces S +  
and S- ,  representing the vortex sheet, and a regular surface region S,  which includes 
the ring bubble. The fluid domain is still simply connected when the internal boundary 
is taken as the union of S,, S +  and S - .  

The lengthscale for the problem is taken as R,,, (the maximum radius the bubble 
would have achieved in an infinite fluid), the timescale is taken as R,,,./(P, -Po)]; 
(the collapse time of a spherical bubble in an infinite fluid of density p), and the 
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pressure scale is P, -Po = AP. With respect to the three scaling parameters, the non- 
dimensionalized coordinates, r* and z*, time t* and pressures P* can be expressed as 

Other geometric, kinematic and dynamic quantities in the following mathematical 
formulations are non-dimensionalized in the same manner. In the remainder of this 
paper, all variables are dimensionless and the superscript * is dropped for convenience. 

2.2. Mathematical statement of problem 
Based on potential flow theory, the velocity u can be represented by the gradient of the 
velocity potential #,u = V$, with $ satisfying Laplace’s equation inside the fluid 
domain D, 

where x is the spatial coordinate. Initially, the bubble boundary is assumed to be a 
spherical surface with radius Ro. Over this surface, a uniformly distributed velocity 
potential 9 is prescribed using Rayleigh’s (1917) spherical bubble theory: 

V”(x, t )  = 0, x E D, (2)  

The boundary conditions before the impact of the re-entrant jet are as follows. The 
kinematic boundary condition on S,  is 

where xp is the position vector to a material point p .  The kinematic boundary 
conditions on the rigid wall, S,, and at infinity are, respectively, 

a# - = 0, 
an 

and IV$l -+ 0. (6)  

P(x,, t )  = Po, xp E s,. (7) 

The dynamic boundary condition on S,  is 

After initial impact, the boundary conditions (4) and (7) still apply without 
modification to fluid particles on S,; however, matching conditions must be introduced 
on the common surface, S+ n S-. The component of the velocity normal to the 
common surface must be continuous across the surface, 

where ng and np are outward normals (directed away from the fluid) to S +  and S-  at 
p+ and p-,  respectively. The pressure across the common surface must also be 
continuous, 

Note that the pressure varies along the common surface and is not in general equal to 
p Ipes+ = p I p d .  (9) 

43. 
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In order to solve the problem, the dynamic boundary conditions on the bubble 
surface and the common surface, (7) and (9), must be written in terms of $. On S,, the 
condition on $ is Bernoulli's equation written in material derivative form: 

To derive the equation for q5 on the common surface, consider Bernoulli's equation 
written for a+: 

and for p-  

The left-hand sides of these two equations are the time rates of change of q5 following 
the component of the fluid motion in the direction normal to the common surface. 
After subtracting (12) from (1 1) and employing the matching conditions (8) and (9), the 
above equations become 

where the subscript n indicates the derivative following the normal component of the 
flow. 

2.3. Conditions at the instant of impact 
As was pointed out in 92.1, the liquid-liquid impact occurs continuously. In the 
numerical model, this continuous impact will be simulated by a finite number of 
discrete impacts of surface panels of finite size. Each panel impact generates pressure 
impulses and, as is shown below, temporal discontinuities in $ and V$ at the instant 
of the impact. The pressure impulse, Z, is defined by 

I =  liml:Pdt, 
t"*t' 

where P is the impact pressure and t' and t" represent the instants just before and just 
after the impact, respectively. Since the interval from t' to t" is infinitesimal, it can be 
shown from Bernoulli's equation that the velocity potential and pressure impulse 
satisfy the following relation (Batchelor 1967) : 

= -I/& (1 5) 
in which @' and 9'' are, respectively, the velocity potentials just before and immediately 
after the impact. This equation states that whenever an impact occurs, the velocity 
potential is discontinuous at that instant and has a jump which is equal to -Z/p. For 
any two impacting material points (p+ and p - )  on the bubble surface, the above 
condition can be written as 

$ff+(xp+,  t )  = $'+(xp+, t )  - I + / &  
q5"-(xp-, t )  = $'-(xp-, t )  - I-/p. 

Subtracting (17) from (16) and noting that I+  is equal to I -  at the impact point, a 
relation for the difference in q5 across the impact surface at the instant of impact is 
obtained, 

(18) $"+(xp+, t )  - $"-(xp-, t )  = $/+(xp+, t )  - $'-(xp-, t) .  
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This relation states that the difference in $ between two impacting points remains the 
same during the impact. In the present model, the difference in r$ varies along the 
impact interface. Best (1993) derived the same relationship, but applied it only to the 
impact of the north and south poles. After impact, he created a simply connected fluid 
domain by using a fictitious cut along which the difference in $ was assumed constant. 

2.4. Boundary integral equations 
The initial boundary value problem for the velocity potential $ as defined in the 
previous subsections, is solved by the boundary integral equation method. For times 
before initial impact, the numerical solution method, which is explained in the 
following section, is the one used by Blake et al. (1986) and others. In this method, the 
boundary conditions, (4) and (lo), are integrated over each time step to yield the new 
position of S, and the value of $ on this surface. To proceed on to the next time step, 
the values of a$/an on sb must be determined. This problem is solved with a well- 
known boundary integral representation derived from Green’s theorem : 

where p is a field point, q is a source point varying as an integration variable on the 
surfaces S, u S,, dS, is the differential area element of S,  u S,, np is the normal to 
S,  u S,  at q directed outward from the fluid and the kernel G(p,  q)  is equal to l / l p -q l .  
Equation (19) is often called the conventional boundary integral equation (CBIE) in 
the sense that the kernels involved are weakly singular for G(p,  q) and Cauchy singular 
for aG(p, q)/an,, which are integrable without the need of any special treatment. 

Unfortunately, the above approach fails when the re-entrant jet approaches the 
opposite surface of the bubble in the final stage of the collapse. This failure is caused 
by two problems with the CBIE. First, just before initial impact, an equation written 
for a point on the tip of the re-entrant jet will be nearly identical to that written for a 
corresponding point near the south pole of the bubble. Thus, for instance, if one is 
solving for a$/an with known $, an ill-conditioned or nearly singular coefficient matrix 
will result in the boundary element calculations. Second, just after initial impact, due 
to the matching condition (8) the integral of a$/& along S+ and S-  will cancel. Thus, 
additional equations are needed to calculate a $ p n  along the common surface. In the 
following, a new approach is presented in which the CBIE is modified to account for 
the common surface and a hypersingular boundary integral equation (HBIE) is 
introduced to form a closed equation system. With this new approach, the calculations 
based on the boundary integral equation method can be carried out continuously from 
before initial impact into the penetration process. 

Making use of the properties of single- and double-layer potentials (Giinter 1967; 
Burton & Miller 197 1) as well as the matching condition (8), the CBIE (1 9) is modified 
in Appendix A for cases with a common surface to yield 

In this modified CBIE, the equation is written with respect to p E S+ when the field 
point p is on the common surface S+ n S - .  In the following section, on the numerical 
technique, it will be shown that during penetration the boundary conditions can be 

FLM 257 6 
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integrated over each time step to yield the new positions of the surfaces Sb and S +  n S-, 
the values of $ on S b  and the values of 9'- 9- on S+ n S - .  With these values, &$/an 
on S,  and $+ + $- on S+ n S -  can be determined from (20). However, a#/& on the 
sheet is still unknown. 

In order to find an analytical expression for a#/& on the common surface, the 
modified HBIE is derived in Appendix A by performing a directional derivative of the 
CBIE with p inside the domain D and then letting p approach the boundary along a 
direction normal to the boundary. The expression of the modified HBIE has the form 

where n p  is the outward normal of the surface at p. Like (20), this modified HBIE is 
valid for the field pointp either on the common surface or on the rest of the boundaries. 
From (21), a$/an on both S +  n S-  and S, can be determined as long as # on the 
surfaces S,  u S,  and #+-& on S' are prescribed. 

2.5. Energy considerations 
The equation governing the energy of the flow is 

'dv- ;q'dV+-((V,(t)- V,(O)) = 0, (22) J"f(t) S,IO) P 
where the integration limits b(t) and VAO) are the fluid volumes at times t and t = 0, 
respectively, and V,(t) and Q(0) are the volumes of the bubble at times t and t = 0, 
respectively (see Duncan & Zhang 1991, equation (12)). The first two terms on the left 
are the kinetic energies of the fluid at the two times and can be calculated from surface 
integrals over the bubble and the common surface (Lamb 1945): 

where S is the internal boundary S, u Sf u S - .  The third term in (22) is the potential 
energy defined as the work done against the pressure at infinity due to changes in the 
bubble volume. 

For times up to the instant before initial impact, the total energy of the system is 
constant. During the collapse phase before impact, the potential energy decreases and 
the kinetic energy increases by equal amounts. However, there is a loss of kinetic 
energy associated with the liquid-liquid impact and this energy is not converted to 
potential energy. Thus, the total energy decreases. This kinetic energy loss is given by 
the following equation which is derived in Appendix B: 

1 AE, = &(V$")a-$(V$')2dY= -2 I+(V($')+-V($')-)-n+dS. (24) s, Is+ 
Rogers et al. (1 990) and Szymczak et al. (1993) also noted an energy loss during impact 
and presented a similar formula. In the above equation, the value of I+ is a positive 
maximum at the impact interface since the gradient of I must accelerate the fluid on 
both sides of the interface in directions away from the interface. The difference in the 
normal components of the velocities inside the brackets is always positive as long as 
there is an impact. Thus, AE, must be less than zero. It should be noted that the above 
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expression was derived on the assumption that the colliding surfaces stick together 
after impact. It is this assumption that causes the loss in energy. 

As an example of a simple impact problem demonstrating the energy loss, consider 
two parallel liquid layers of infinite extent in planes normal to the z-axis. One layer is 
above the z = 0 plane and has a uniform velocity v = - Vk and a thickness h+ while 
the other layer is below the plane z = 0 and has a uniform velocity v = Vk and a 
thickness h-. Impact occurs when the ‘inner’ surfaces meet at z = 0. In this example, 
the divergence of equation (B 1) yields 

a 2 1  - = - 2pV&(z), 
az2 

which has the solution 
- 2p Vh- 

I +  = h++h- (z-hf )  

in the upper layer. Evaluation of (24) in this case yields 

h+h- 
h+ + h- 

AE& = 2pV2- 

per unit area. Thus, for the case when h+ = h- = H, the kinetic energy change is 
- p P H  per unit area. This change is equal to the total kinetic energy before impact 
and indicates that, as expected, the two layers will come to rest after impact. 

3. Numerical scheme 
The numerical schemes to be discussed in this section deal with two issues: the 

accurate solution of the integral equation system (20) and (21) at a given time instant 
and the time advancement of the boundary conditions (4), (10) and (13). For the first 
issue, it is important to note that while the introduction of the modified HBIE (21) 
produces a well-posed system of equations during penetration, it unfortunately makes 
the numerical scheme more complicated than schemes that use the CBIE alone in cases 
before penetration. These complications arise out of the need for regularizing the 
hypersingular kernel, making the solutions unique and discretizing the geometry and 
density functions properly. For the second issue, the kinematic boundary condition 
must be modified slightly to treat the node points on the vortex sheet. 

3 .  I .  Regularization of the hypersingular integral 
As can be seen from (21), the kernel a2G(p, q)/an, an, has a third-order singularity 
(l / lp-qI3) as p approaches q, which makes it non-integrable in the ordinary sense. 
Several regularization techniques to treat integrals of this kind exist (Meyer, Bell & 
Zinn 1978; Ingber & Rudolph 1990; Krishnasamy et al. 1990). In this paper, the 
hypersingular kernel has been transformed to a Cauchy-singular kernel. The relation 
between the two kernels can be expressed in the identity (Ingber & Rudolph 1990) 

where the gradient operator with a subscript indicates that the operation is carried out 
with that subscript as a variable. The decomposition of this integral in a cylindrical 
coordinate system with axisymmetry transforms the density function #(q) in (28) to the 
density function a#(q)/as,, where s, is the arclength along the surface. The 
corresponding derivations related to this decomposition and expressions for other 
terms in (21) can be found in Appendix C. 

6-2 
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3.2. Uniqueness of solutions of the hypersingular integral equation 
Using the hypersingular integral equation (21) alone to solve the Dirichlet problem of 
Laplace's equation will result in non-unique solutions. (Solutions are only unique up 
to an additive constant.) This non-uniqueness can be easily deduced from the identity 
(28) in that, if #(q) is a constant along the surface, the integral with the hypersingular 
kernel is identically equal to zero; thus, (21) will yield a#/& = 0 at all points on the 
surface. However, this contradicts the well-known case of a Rayleigh spherical bubble 
in an infinite fluid where a uniformly distributed 9 on the bubble corresponds to a non- 
zero a# /& on the surface. In the present work, this non-uniqueness is resolved by 
introducing a combined scheme in which the modified CBIE and HBIE are jointly 
used. In this combined scheme, the CBIE is responsible for recovering the constant in 
q5 along the surface which would be lost if the HBIE were used alone. 

3.3. Time advancement algorithm 
The time advancement techniques for times before and during penetration are 
discussed separately in this subsection. All of the temporal integrations are performed 
by the following predictor-corrector scheme. Given an ordinary differential equation 
dy/dt =At, y )  with an initial condition y(to) = yo, the numerical solution for y at step 
i+ 1 ( i  = 0,1,. . .) is given by 
predictor step : 
corrector step : 

V?+l = Yi + k + 1 -  ti)f ( 4 7  A), 
Yi+l = Yz+&+l- ti> If(ti,Yi) +f(ti+l,Yl*+l)l. 

For ease of presentation, only the predictor step is presented in the following. 

3.3.1. Time marching before initial impact 
Let us assume that at time t all quantities are known. To proceed on to t+At, the 

boundary conditions (4) and (10) are integrated following the fluid particle p on the 
surface S,: 

(3 1) x,(t + At) = x,(t) + V#(x,, t )  At, 

These equations yield the new position of S,  and the values of # on this surface at 
t + At. From this information, the derivative of # in the direction tangent to the surface 
can be computed. In order to proceed to integrate (4) and (10) over the next time step 
the values of a#/an are required. These values are obtained by solving the integral 
equations. 

3.3.2. Time marching after initial impact 
After initial impact, material points on the toroidal bubble are treated like those 

before impact by integrating (4) and (10). The integration of the boundary conditions 
for points on the common surface is somewhat more complicated since two fluid 
particles, pf on S+ and p -  on S-,  occupying the same location on each side of the 
surface at time t will in general not be together at the next time step (the tangential 
velocities are not equal on each side of the sheet). The relation between the velocity of 
a fluid particlep and the velocity of its projection in the direction normal to the surface 
is 

aq5 dx" (%.n,)n, = %n, = 3, (3 3) 
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where xb is the position vector of the projection of x p  in the normal direction np.  
Writing this relation at p +  and p -  on S +  and S -  for the predictor step yields 

and a$- - xE-(t+At) = x;-( t )+At-np,  
an; (35) 

respectively. In view of the matching conditions (8) and the fact that nt = -n;, the 
above equations reduce to a single equation yielding the new position of the common 
surface at time t + At. The boundary condition (1 3) integrated for the predictor step is 

where the subscript n indicates the values of $ at a point following the normal flow. 
It should be emphasized that it is the values of 4 on the bubble surface (S,) and the 

values of A# (= #J+- 4-) on the impact interface (S+  n S- )  that are advanced in time 
by (32) and (36). Both quantities are continuous with respect to time. 

3.3.3. Time step determination 

time increment At is determined by 
In the time advancement, a variable time step technique is adopted. At each step, the 

At = 
1 +0.5Vh,,' (37) 

where V,,, is the maximum velocity on the bubble surface at the current time step and 
C is a constant that is taken as 0.04 before penetration when the CBIE is used and 0.01 
during penetration when the combined scheme is employed. The determination of these 
values of C is explored in 94.3. 

3.4. Numerical implementation of the integral equations 
The modified CBIE (20) and HBIE (21) are solved by the boundary element method. 
The infinite rigid wall is simulated by an image bubble. The bubble surface is 
discretized by n, panels. Given the r- and z-coordinates of nb + 1 panel nodes along the 
surface, the coordinates r and z along each panel can be written as functions of a cubic 
spline parameter, Q which is chosen as a variable along the chord length of each panel 
(Dommermuth & Yue 1987; and Press et al. 1989), 

r = r(C), z = ~ ( 5 ) .  (38) 
Thus, the arclength coordinate, s, along each panel can be calculated by 

Other geometric quantities in the integral equations such as G(p,  q) and VG(p,  q)  are 
computed from the above equations. The most stable calculations were performed with 
the density functions 4 and a+/an inside each panel interpolated as cubic spline and 
linear functions of s, respectively. 

The spline fitting of the surface during penetration is complicated by the presence of 
the triple point where the common surface attaches to the ring bubble. In the present 
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work, the surface is fitted continuously from the north pole to south pole by a path 
covering S + ,  S,  and S -  sequentially. As a result, the normal to the surface directed into 
the fluid changes continuously during the integration around the surface and a cusp is 
formed in the bubble at the triple point (see figure 1 b). This treatment is based on the 
fact that at the final stage of the bubble collapse, the speed of the surface of the re- 
entrant jet is generally on the order of 101-102(AP/p)~ while the fluid near the wall is 
moving more slowly in the opposite direction. Thus, there exists a strong shear layer 
in the region close to the triple point. In experiments, this shear layer contains a layer 
of gas. A similar flow is generated when a liquid jet impacts on a flat water surface and 
air entrainment occurs along the periphery of the jet. Surface tension forces have the 
tendency to round the cusp, but in the present case this does not occur owing to the 
effects of inertia and the short timescale. 

Since the problem is axisymmetric about the z-axis, the terms in the integral 
equations can first be integrated analytically with respect to the circumferential 
variable 8. The resulting terms then involve elliptical integrals of the first and second 
kinds as functions of the arclength s in the 0 = 0 plane (see Appendix C). The field 
points (collocation points or nodes) are taken at the edge points of the panels. As a 
result, the integral equations (20) and (21) can be written in discretized forms within 
each panel, 

2n(a@/an),; i = m + 1 , .  . . , n,-m+ 1 
(41) 

where m is the index of the triple point; i a n d j  represent the indexes of the field point 
and source panel, respectively; Li is the arclength of panelj; J1 and Ja  are the terms 
corresponding to the contribution from the image bubble; C,, D,, Ei, and &* are 
functions of the elliptic integrals and can be found in Appendix C; Q, (a4/an)l and 
(a$/asy' are functions of the arclength inside the panelj; and #i and (a#/&), are values 
at the point i. Gauss-Legendre quadrature formulae were used to calculate the 
integrals in (40) and (41), in which the regular integrands were integrated with a 5-point 
formula while the non-regular integrands, which contain logarithmic singularities, 
were treated with the formulation given by Anderson (1965). The linear system of 
algebraic equations formed in this way were solved with the LDU Algorithm (Press 
et al. 1989). 

Various combinations of (40) and (41) were applied at the nodes during different 
phases of the calculations. For cases without a common surface, two combinations 
were used. In some cases the CBIE was applied at all the nodes. In other cases, the 
HBIE was applied at the first n d  nodes on top of the bubble starting with the north pole 
and the last nd nodes ending with the south pole while the CBIE was applied at the 
remaining nb + 1 - 2nd nodes. In cases during penetration with m double nodes along 
the common surface, the HBIE was applied at the first n d  + 1 -m nodes starting with 
the north pole and the CBIE was applied to the last m nodes ending with the south 
pole. 

- 
- { 4n(a++/an)( ; i = 1, . . . , m, 
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The adjustment of the time step during the impact of adjacent nodes was found to 
be critical to achieving an accurate calculation. The general technique employed here 
was to adjust the time step so that, given the distance and relative velocity between the 
nodes at the current time, the nodes would impact at the end of the time step. To 
implement this scheme a minimum distance B was chosen. If the distance between one 
or more pairs of nodes on the ring bubble adjacent to the triple point was less than E ,  

the time step was adjusted so that all of these pairs collided by the end of the time step. 
In performing the calculations, it was found that as E was decreased the calculation 
converged initially. However, if E was too small, an overlapping of the nodes on the 
ring bubble near the triple point occurred at the next time step. It is thought that these 
problems arise because the Green’s function between nearly touching nodes from 
opposite sides of the bubble becomes singular as the distance between the nodes tends 
to zero. Thus, for small enough E the solutions of the boundary integral equations are 
probably inaccurate. After a number of test calculations, it was found that E = 0.002 
was a typical minimum value that produced a converged calculation without 
overlapping of adjacent nodes. This value was used for all the calculations presented 
in this paper. 

3.5. Numerical instabilities 
The numerical method presented above exhibits unstable behaviour when the volume 
of the ring bubble approaches the initial volume of the bubble. The causes of the 
numerical instability are not clear. There is no theoretical analysis available to examine 
the numerical instability because the boundary conditions (4), (10) and (13) are coupled 
and the conditions (10) and (13) are nonlinear. Several researchers (Longuet-Higgins 
& Cokelet 1976; Dommermuth & Yue 1987; Oguz & Prosperetti 1990) have reported 
similar instabilities encountered in boundary element calculations employing higher- 
order elements when simulating nonlinear waves and water droplets. 

To cope with the instabilities, a 5-point smoothing technique (Mathematical 
Handbook 1977, pp. 907-908) was introduced. Given a data set yi(i = 0, 1,2,. . . , m), 
the modified data set yi(i = 0,1,2, . . . , m) is computed by the following smoothing 
formulations : 

(42) 
(43) 
(44) 
(45) 
(46) 

Mesh regridding is also adopted to keep equal panel sizes during the time stepping. 

y’ .I - - - 315[-3(.~-2 +yi+Z) + 12(yd-, +yt+J + 1 7 ~ J ,  i = 2, * - 3 m-2, 
A = &Ply0 + 9y, - 3y2 - 5y3 + 3y4), 

= +&, + 1 3 ~ ,  + 12y2 + 6y3 - 5y4), 
~ k - 1  = A(- 5ym-4 + 6 ~ m - 3  + 12~m-S + 13.Ym-l + 9.~,), 
v; = & ( 3 ~ - ~  - 5~, - ,  - ~ J L - ~  + 9 ~ ~ - ~  + 3 1 ~ ~ ) .  

4. Verification of the numerical modelling 
In this section, the results of several static and dynamic tests designed to verify the 

mathematical model and to assess the performance of the combined numerical scheme 
developed in $02 and 3 are presented. 

4.1. A sheet attached to a toroid 
The first test of the numerical model is to examine the accuracy of the boundary 
element solver with the combined scheme on a static problem. In order for this test to 
have relevance to the penetration problem, it must satisfy the following conditions: the 
boundary geometry must include both regular and common surfaces, across the 
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FIGURE 2.  Comparisons of the results of the combined scheme with analytical solutions for a toroidal 
surface and a two-layer sheet. (a) Geometry of the sheet, toroid and mesh distributions (A, nodal 
point). (b) Calculated (A) and analytical (-) 9 on the sheet. (c )  Calculated (A) and analytical 
(-) a$/an on the sheet and toroid. 

common surface q5 and aq5/as must be discontinuous while a$/an must be continuous, 
IVq5l must vanish at infinity, and q5 must be sufficiently continuous inside the domain. 
The boundary geometry of the chosen problem is that of a toroid about the z-axis 
connected to a flat circular sheet on the plane z = 0 as shown in figure 2(a). In the 
domain exterior to this boundary, Laplace's equation can be easily solved in toroidal 
coordinates (q,8, #-) given by the following transformations (for axisymmetric 
problems) : 

a sinh (7) 
cosh (7) - cos (8) ' 

a sin (0) 

X =  

Z =  
cash (7) - cos (8) ' 

(47) 

Thus, the cross-section of the toroid is given by 7 = qo, --R < 13 < 'II and #- = 0 in the 
(q, 8, #-) system or (x-acoth yo)2 +z2 = a2/sinh2(qo) and y = 0 in the (x, y ,  z) system, 
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FIGURE 3. Comparison of bubble profiles between the conventional (-) and combined (. . . . . . . .) 
schemes for a transient cavitation bubble collapsing near a rigid wall with R, = 0.1 and Z ,  = 1.5. The 
numbers 1 to 8 correspond to the non-dimensional times t = 0.983, 1.707, 1.877, 1.972, 2.014, 2.043, 
2.068, and 2.086. 

while the cross-section of the sheet is given by 0 d 7 < yo, 0 = fx and @ = 0 or 
0 d x d a coth qo - q'sinh qo, y = 0 and z = 0 in the two different coordinate systems, 
respectively. In the present test, qo is chosen as 2.890454 and a is 1.117637. From the 
infinite number of particular solutions of Laplace's equation in the (T, I ,~ ,  $) system 
(Moon & Spencer 1961, pp. 369-372), one is chosen such that it satisfies the 
requirements of the numerical tests cited above. Thus, given $ on the sheet and the 
toroid in the form 

(49) 
the corresponding expressions for &$/an are, respectively, 

a$/an = 0 on the sheet, (50) 
a$/an = (cosh (7) - cos (0)); sinh (7) sin ($3)/(2a) (51) 

#(7, 0) = (cosh (7) - cos (0)); sin (is), 

on the toroid. 

In the numerical calculations, $ was specified on the toroid and $+ - $- was specified 
on the sheet from the analytical solution (49). The integral equations (20) and (21) were 
then solved with the combined scheme for &$/an on the entire surface and $ on the 
sheet. The comparison between the analytical and numerical calculations of $ on the 
sheet and a#/an on both the sheet and toroid are plotted in figures 2(b) and 2(c). The 
results show that the numerical calculations agree well with the analytical ones with the 
errors in a$/& and $ at the north pole less than 0.3% and 0.2%0, respectively. The 
deviation of a+/an near the triple point between the sheet and toroid is as expected 
because the numerical scheme is constructed on the basis of a smooth surface generated 
by a cubic-spline fitting rather than a non-smooth connection at that point as in this 
test case. This is not considered to be a problem since, in the simulation of the 
penetration process, the tangent along the bubble surface is always assumed to vary 
continuously. 
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FIGURE 4. Various quantities plotted versus time for the bubble collapse depicted in figure 3. (a) The 
z-coordinates of the north and south poles of the bubble: -, conventional scheme; A, combined 
scheme. (b)  The velocity potentials at the north and south poles versus time: -, conventional 
scheme; A, combined scheme. (c) The energies versus time for the combined scheme: total 
mechanical energy (-), kinetic energy (. . . . .), and potential energy (----). 

4.2. A cavitation bubble collapsing near a rigid wall 
As a dynamic test, the combined scheme was used to compute the growth and collapse 
of a cavitation bubble adjacent to a rigid wall up to the time just before penetration 
begins. Because there is no analytical solution available for this non-spherical collapse 
case, the numerical calculations using the combined scheme are compared with those 
using the CBIE scheme. The results of the present CBIE scheme were compared to 
similar calculations in the literature and found to be in excellent agreement. Initially, 
the bubble is spherical and centred at r = 0 and Z ,  = 1.5 with radius R, = 0.1. The 
combined scheme was used with nb = 32 and nd = 16. Linear isoparametric elements 
were employed for the conventional scheme, also with nb = 32. In figure 3, the bubble 
profiles at different time instants in the collapse phase obtained by both the combined 
and conventional scheme are plotted together. Both schemes give almost the same 
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FIGURE 5. Convergence as a function of mesh size for the combined scheme before and after 
penetration. (a) The height of the north pole versus time; (b) the normal velocity of the north and 
south poles versus time. ----, nb = 32; ---.-, nb = 48, and -, nb = 64. T denotes the instant of 
initial impact. 

bubble profiles at the same time. The heights of the north and south poles, the velocity 
potentials at the north and south poles and the kinetic and potential energies of the 
flow are plotted versus time in figures 4(a) ,  4(b)  and 4(c), respectively, for both 
schemes. There is good agreement in all cases. 

4.3. Convergence studies 
Several computations aimed at examining the convergence of the combined scheme 
versus panel size and time step size during penetration simulations were also made. 
Figure 5(a) and 5(b) show the height and velocity of the north pole from before 
penetration through the penetration process for various panel numbers. As can be seen 
from the figure, the results converge as the number of panels increases. Figures 6(a) 
and 6(b) show the same quantities converging as the time step decreases. The number 
of panels and time step used in the present results are given in the following section. 
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FIGURE 6. Convergence as a function of time step size for the combined scheme before and after 
penetration. (a) The height of the north pole versus time; (b)  the normal velocity of the north and 
south poles versus time. -.-.-, C = 0.06; ----, C = 0.04; ........ , C = 0.02; -, C = 0.01. The 
parameter Cis related to the variable time step, At = C/(1 +0.5Vbaz). T denotes the instant of initial 
impact. 

The tests conducted in this section show that the combined scheme developed in $42 
and 3 is valid in both static and dynamic cases. 

5. Simulation of the penetration process 
The calculations presented in this section were done with nb = 64 and R, = 0.1. 

From the initial instant up to the time when the distance between the north and south 
poles becomes less than 0.03, the CBIE method is used for all nodes. At this point, the 
scheme is switched to the combined CBIE-HBIE method with nd = 32. When 
penetration begins, the scheme is again switched to that described in 53.4 for cases with 
a common surface. The parameter C for time stepping is taken as 0.04 before 
penetration and 0.01 during penetration. The value of e is chosen as 0.002 (see $3.4). 
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FIGURE 7. Bubble profiles and velocity fields for 2, = 1.5 and R, = 0.1: (a) t = 2.08545, (b) 
t = 2.088 61, (c) t = 2.09241, (d )  t = 2.095 5 1. The lengths of the velocity vectors are scaled with respect 
to the flow speeds at the location (Y  = 0, z = 1.1375) in each plot. These speeds are 8.43, 7.94, 7.17 
and 6.30 in (a), (b), (c) and (d),  respectively. 

zo T zo v, K V ,  rn, 
1.1 2.16048 0.099 -9.055 0.042 -4.254 5.400 
1.25 2.13679 0.318 -8.459 1.126 -4.167 5.331 
1.5 2.09013 0.777 -11.574 3.480 -4.079 4.717 
1.75 2.05396 1.172 -12.013 4.550 -4.235 4.371 

TABLE 1.2,: initial height of the bubble centroid; T,: collpse time; Z,: collapse height (z  of north and 
south pole at t = T ) ;  V,: velocity of the north pole before impact (in the - z  direction); V , :  velocity 
of the south pole before impact; V,: velocity of the north (or south) pole just after the initial impact; 
rn8: circulation around the ring bubble at the instant of the initial impact 
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In the following, results are presented for 2, = 1.1, 1.25, 1.5 and 1.75. The results for 
2, = 1.5 and 1.1 are presented first and in more detail than those for the other 2, 
values. For reference throughout the discussion, table 1 gives the time (Q, the height 
(Zc), the velocities of the north and south poles of the bubble (V,  and K) at the instant 
before initial impact and the velocity of the north pole of the sheet (V,) as well as the 
circulation (r,,, defined below) at the instant after initial impact for all four values of 

5.1. Bubble profiles and velocity fields 
The general features of the flow field just before and during penetration are illustrated 
in figure 7, for Z ,  = 1.5. Figure 7(a) shows the flow field one time step before 
penetration. The re-entrant jet has formed at the top of the bubble surface and is 
moving toward the rigid wall. The fluid on the lower side of the bubble has not yet 
sensed the jet and is still moving away from the wall. The relative normal velocity 
between the north and south poles at this instant is 15.05 (see table 1). The poles of the 
bubble meet at z = 0.78 and the flow field soon after penetration is shown in figure 
7(b). As can be seen in the figure, the geometry of the bubble surface has become a ring 
bubble with an attached sheet. The flow pattern has suddenly changed such that the 
flow on the lower side of the bubble has reversed direction and is now moving toward 
the wall. The velocity of the re-entrant jet is still directed toward the wall but with a 
much smaller magnitude (4.08) than before impact (1 1.57). The velocity components 
tangent to the common surface and the ring bubble surface are directed mainly toward 
the axis of symmetry on the jet side of the common surface and bubble and away from 
the axis on the other side; this indicates that there are vortex elements along the sheet 
and in the bubble that circle the z-axis. The mechanism that brings about this sudden 
change in the flow field is the liquid-liquid impact during jet penetration. 

Further development of the penetration process is shown in figure 7(c). The 
dominant changes in the bubble profile are the drastic reduction in the volume of the 
ring bubble and the extension of the vortex sheet due to continuing impacts of the 
surface panels of the ring bubble. There is also some translational motion of the bubble 
and the sheet in the direction of the rigid wall. In figure 7(d), the volume of the ring 
bubble has reached about 0.72 times the initial bubble volume. The calculation becomes 
unstable soon after this time. It is presumed that if gas were included in the bubble, the 
bubble would begin a second growth phase at approximately this time, depending on 
the amount of gas. The flow pattern in figure 7 ( d )  is characterized by a large vortex 
sheet attached to a small ring bubble with a rotating flow concentrated in the area 
around the ring bubble in the vicinity of the triple point. 

Bubble profiles and velocity fields for 2, = 1.1 are given in figure 8. As in the 
previous case, the impact of the re-entrant jet results in the formation of a ring bubble 
and a vortex sheet. At the instant before initial impact, the north and south poles of 
the bubble are much closer to the wall ( z  = 0.10) than in the previous case and the 
relative normal velocity between the north and south poles is 9.10 compared to 15.05 
for 2, = 1.5, see table 1. The remaining bubble volume at the instant of impact (46.19 
for 2, = 1.1) is much larger than in the case for 2, = 1.5. Later in the penetration 
process, the tip of the vortex sheet hits the rigid wall for Z,  = 1.1 (figure 8 c, d )  while 
the tip of the sheet for 2, = 1.5 is still relatively far away from the wall even at the end 
of the first collpse. The shape of the vortex sheet also shows marked differences 
between the two cases. For 2, = 1.5, the vortex sheet is ' U '-shaped while for 2, = 1.1 
the sheet rolls up at the sides due to the stronger influence of the wall. The calculation 
for 2, = 1.1 is terminated when the bubble volume is reduced to about 7.1 times its 
initial volume because of numerical instabilities. 

2,- 
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FIGURE 8. Bubble profiles and velocity fields for 2, = 1.1 and R, = 0.1 : (a) t = 2.15059, (b) 
t = 2.16400,(c) t = 2.18074,(d) t = 2.19429. Thelengthsofthevelocityvectorsarescaledwithrespect 
to the flow speeds at the location (I = 0, z = 0.7125) in each plot. These speeds are 5.16, 4.30, 3.24 
and 2.45 in (a), (b), (c) and (d) ,  respectively. 

5.2. Pressure fields 
The pressure at any point in the fluid domain was computed from the non-dimensional 
Bernoulli equation, 

P-P, aqi 1 aqi 
P,-Po at 2 ar 
-- - ----[(-7+(gJ]. 

The required spatial and temporal derivatives of qi were calculated by finite difference 
from local values of q5 that are calculated from the integral equations (A 7) and (A 13) 
in Appendix A using values of qi and a$/& on the surface of the bubble and the vortex 
sheet. Note that the pressure can be computed after the calculation of the bubble 
motion is completed. Unfortunately, during penetration, at each time instant when 
new surface panels of finite size come together, q5 goes through finite jumps as can be 
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FIGURE 9. Pressure contours for Z,  = 1.5 and R,, = 0.1: (a) t = 2.08545, (b) t = 2.08861, 
(c) t = 2.09241 and (d) t = 2.09551. The bubble profiles are shown as a dotted line. 

seen from (1 5). These jumps cause the derivative oft$ with respect to time, and thus the 
pressure, to fluctuate wildly. If the panel size were infinitesimal these jumps in 4 would 
also be infinitesimal and the pressure would vary rapidly but in a smooth manner. To 
remedy this problem, a linear least-squares fitting technique was used to smooth q5 in 
a given time interval before computing a$/at and the pressures. 

Corresponding to the flow fields in figure 7(a-d) for 2, = 1.5, four plots of the 
pressure contours are presented in figure 9 (u-d), respectively. The pressure contours 
are given as solid lines while the profiles of the bubble are shown as dotted lines. The 
pressure field one step before penetration is given in figure 9 (a). The highest pressure 
region in the field is within the contour with magnitude 29 which is located on the z- 
axis above the bubble. The pressure field just after impact, figure 9(b), is dramatically 
different than that before impact. The highest pressure region in figure 9(b) is at the tip 
of the jet where the magnitude of the enclosing contour is 80. This high-pressure 
buildup at the penetration interface in turn causes a large deceleration of the fluid in 
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the re-entrant jet and an acceleration toward the wall of the fluid between the sheet and 
the wall. From the pressure contours in figure 9(c, d) ,  it can be seen that the pressure 
at the penetration interface continues to increase, reaching 165 in the final figure. The 
pressure contours far from the bubble are nearly circular at this time. 

The pressure contours corresponding to the velocity fields in figure 8 (a-d) for 2, = 
1 .1  are presented in figure lO(a-d), respectively. As can be seen from figure lO(a), at 
the instant just before penetration, a high-pressure region is again located on the z-axis 
above the bubble. The maximum pressure contour in this case is 9, considerably less 
than in the case for 2, = 1.5. Immediately following the initial impact, figure lO(b), 
large pressures are located around the impact interface. The pressure contour 
surrounding this region has a magnitude of 30 and intersects the wall. The further 
development of the pressure fields is given in figure lO(c, d )  from which it can be seen 
that the pressure reaches more than 45 at the penetration interface and the wall. It 
should be noted that the high-pressure region on the wall covers a smaller area for 
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FIGURE 11. The displacements of the north pole on the common surface for various values of 2, 
as functions of time after initial impact, t -  q(2,). 

Z ,  = 1.1 compared to Z ,  = 1.5. This concentration may be partially responsible for the 
well-known increase in the potential for surface damage as 2, is decreased. Also of 
interest in figure 10(d) are the two pairs of closed low-pressure contours. The upper 
pair encloses the ring bubble while the lower pair, which is located near the bend in the 
vortex sheet, indicates the presence of a localized vortex-ring-like structure. This 
structure is also visible in the velocity contours in figure 8(d).  

5.3. Motion of the north and south poles 
In this and the following subsections, selected quantities from four calculations with 
Z, = 1.75, 1.5, 1.25 and 1.1 are examined as functions of time. In order to make 
comparisons of various quantities after initial impact, it was decided to define a 
common time origin, T,, the time when the north and south poles of the bubble meet 
at the instant of initial impact. From the data in table 1 ,  it can be seen that T, increases 
with decreasing 2,. The heights of the north pole for the four cases are plotted in figure 
11. After initial impact, the north pole is defined as the point where the vortex sheet 
intersects the z-axis. As can be seen from figure 1 I ,  the north pole continues moving 
toward the wall after the initial impact in all cases. The relative velocity of the north 
and south poles of the bubble just before initial impact can be found in table 1 along 
with the velocity of the vortex sheet just after initial impact. The relative velocity, 
E-- V,, decreases steadily from 16.56 at 2, = 1.75 to 9.10 at 2, = 1.1; however, the 
speed of the jet tip just after initial impact is between 4.1 and 4.25 in all four cases. The 
slope of the curves in figure 11 indicates the velocities of the north poles. As can be seen 
from the figure the velocity is relatively constant after initial impact for the larger Z,; 
however, for small Z,, the velocity decreases with time and is nearly zero at the end of 
the collapse for 2, = 1.1. 

5.4. Pressure at the centre of the wall 
In figures 12(a) and 12(b), the velocity potential 6 and the pressure on the wall directly 
under the centre of the bubble ((r, z )  = (0,O)) are plotted versus time for different 2,. 
Note that the plot of 6 starts at t = 0 while the plot of the pressure starts fairly late in 



171 

FIGURE 12. (a) The velocity potential and (b) the pressure at the centre of the rigid wall for 
various values of Z, as functions of time. 

the collapse phase, t = 1.80. From Bernoulli's equation (52),  the pressure at the centre 
of the wall is equal to -a$/& since u = 0 at this location. Thus, the pressures plotted 
in figure 12(b) were obtained by differentiating the curves of $ in figure 12(a). Before 
differentiation, the $-data were smoothed with a running 40-point least-squares fit of 
a second-order polynomial in order to eliminate the jumps in $ caused by the panel 
impacts. Each pressure curve has a short gap near the time of the initial impact. This 
gap is due to the inability of the second-order polynomial to fit the $-data well due to 
the rapid fluctuations at that point in time. All cases show sudden rises in the pressure 
during jet penetration. For the case of Z, = 1.1, there is a plateau in the pressure after 
initial impact at about the time when the vortex sheet reaches the wall. 

Figure 12(b) provides useful information of the time history of the pressure at the 
centre of the wall. However, it should be pointed out that the 'maximum' values in this 
plot occur while the pressure is still rising at the point when the calculations terminate 
due to numerical instabilities. To obtain a true maximum value of the impulsive 
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FIGURE 13. The total circulation, r,, = #ip - #iP, and the circulation associated with the ring 

bubble, 4; - $;, versus time after initial impact, t - T,(Z,), for various values of Z,. 

pressure on the wall, a rebounding mechanism such as that provided by a non- 
condensible gas inside the bubble must be considered. A study of the impulsive 
pressure due to a gas bubble collapse and rebound is currently underway. 

5 -5. Circulation 
Before penetration, the fluid domain is simply connected and the bubble boundary is 
a regular surface. In this case, there is no circulation along any closed path inside the 
fluid. However, after initial impact, if a closed path is drawn such that it pierces the 
vortex surface, the circulation along this path is not zero, and the fluid domain is no 
longer simply connected. The generation of this circulation is due to the liquid-liquid 
impact rather than viscous effects. If a closed path is drawn starting from the south pole 
and ending at the north pole of the bubble and enclosing the sheet and ring bubble, the 
circulation for this path, r,,, is given by ($+-$-) evaluated at r = 0. From (13) it is 
easy to show that 

since a$/& = 0 at Y = 0. This finding was used in the two-step method of Best (1991) 
to choose a value of the circulation for the ring bubble. The values of I',, are given in 
table 1 .  As can be seen from the table the circulation increases monotonically from 4.37 
to 5.40 as Zo decreases from 1.75 to 1.1. It is also interesting to examine the division 
of the source of the circulation between the vortex sheet and the ring bubble. This 
division can be seen by comparing the total circulation, r,,, to the circulation around 
the ring bubble, rb, which is obtained with a path that starts at the triple point on the 
underside of the bubble, extends around the outer side of the bubble and ends on the 
top side of the bubble at the triple point. Thus, r, = r$fT-$;, where the subscript T 
refers to the triple point. The values of the two circulations are plotted versus time in 
figure 13 for the four values of Z,. The solid lines in this figure represent the 
circulations associated with the ring bubbles, rb, while the differences between the 
dotted and solid lines are the circulations associated with the vortex sheets for different 
2,. As noted in the previous subsections, the step-like appearance of the plots is due 
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to the discrete panel impacts. This figure shows that, for all four cases, after penetration 
the circulation associated with the ring bubble decreases with time and, since the total 
circulation is constant, the circulation associated with the sheet increases with time. As 
Z, decreases, the rate of increase of circulation associated with the vortex sheet 
increases. At the end of the simulations the percentage of the total circulation 
associated with the sheet is on the order of 50% for the cases with larger Z,. 

5.6. Energy 
The potential and kinetic energies of the flow were calculated using (22) and (23). 
Figure 4(c) is a plot of the potential, kinetic and total energy versus time from t = 0 
up to the instant before initial impact for 2, = 1.5. As can be seen from the figure, the 
total energy is constant. Figures 14(a) and 14(b) give information on the energy versus 
time after initial impact. The potential energy is proportional to the bubble volume, 
which is plotted in figure 14(u). As can be seen from the figure, the volume at the first 
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instant of impact increases with decreasing Z,. For example, the bubble volume for 
Z,  = 1.75 has reduced to almost its initial volume at t = T, while the corresponding 
volume for Z ,  = 1.1 is about 48 times as large as its initial value. Note also from figure 
14(a) that the bubbles with larger volume at the first instant of impact take a longer 
time to reach minimum volume while the rate of decrease in volume with time does not 
vary appreciably with Z,. The total mechanical energy versus time after initial impact 
is presented in figure 14(b). As was noted in $2.5, the total mechanical energy of the 
system should decrease with time for t > T, owing to the liquid-liquid impacts of the 
panels. Energy loss should only occur at the time steps where an impact between two 
or more surface panels occurs. This behaviour is generally evident in the results of the 
calculation as is shown in figure 14(b) at early times for Z,  = 1.25 and 1.1. It is believed 
that the changes in energy between impacts in the other calculations are caused by the 
extensive regridding of the surfaces necessitated by the movement of the panels from 
S, to S+ u S -  combined with finite panel sizes and time steps. In general, the rate of 
energy loss with time increases as Z ,  is increased. For Z ,  = 1.75, the flow loses about 
18% of its total energy by the time the calculation becomes unstable. When the 
calculation for Z, = 1.1 becomes unstable, the energy loss has reached only 7 YO of its 
original value. In a compressible flow this energy would primarily be radiated away in 
the form of sound or shock waves. In the present incompressible calculations this 
energy is effectively radiated away at infinite speed. 

6. Conclusions 
The final stage of the collapse of a cavitation bubble near a rigid wall has been 

simulated with a boundary element method. The method allows for the simulation of 
the growth and collapse of the bubble including the re-entrant jet impact and 
penetration processes that occur toward the end of the collapse. During the impact 
process, the bubble is transformed into a toroidal-shaped cavity (ring bubble). This 
ring bubble is attached to an impact interface that separates the fluid masses that were 
initially on opposite sides of the bubble. The impact interface is assumed to be 
infinitesimally thin and the pressure and the normal velocity across the interface are 
assumed to be continuous. This modelling allows for the formation of a vortex sheet 
along the interface. 

The results of the calculation show that the impact of the re-entrant jet starts at a 
single point on the north and south poles of the bubble. As the process continues, more 
and more of the surface of the bubble participates in the impact process. Before initial 
impact, the fluid in the re-entrant jet is moving toward the wall with high speed and 
the fluid on the other side of the bubble is moving away from the wall. The relative 
velocity of the poles of the bubble at the instant before initial impact increases with 
increasing Z ,  (the initial distance of the bubble centroid from the wall). During impact, 
a high-pressure region that is generated around the vortex sheet dramatically 
decelerates the fluid in the re-entrant jet and forces the fluid on the other side of the 
bubble to accelerate toward the wall. The impact process generates circulation in the 
potential flow system. The circulation along a closed path that starts at the north pole, 
ends at the south pole and encloses both the impact interface and the ring bubble is 
constant after the initial instant of impact. This circulation increases with decreasing 
Z,,. Just after initial impact, the source of this circulation is a bound vortex in the ring 
bubble. However, by the end of the calculation as much as one-half of this total 
circulation is associated with the vortex sheet. The liquid-liquid impact process results 
in a loss of energy in the potential flow system. The energy loss increases with 
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increasing 2, and its value at Z ,  = 1.75 is about 17% of the total flow energy. In a 
compressible flow this energy would primarily generate pressure waves. It is thought 
that in the potential flow system this energy is radiated away suddenly by the infinite 
sound speed. When Zo is small (on the order of the maximum bubble radius), the 
impact interface forms very close to the wall and the pressure on the wall directly under 
the bubble increases suddenly upon initial impact. This high-pressure region is quite 
small in radial extent. As Z,, increases, the pressure rise at the wall due to impact is 
spread over a larger area. This may explain the enhanced potential for cavitation 
erosion with small 2, values. 
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Appendix A. Derivations of the integral equations with regular and non- 
regular surfaces 

Let Di and D,  be defined as the interior and exterior regions, respectively, in a three- 
dimensional space. An interior boundary dividing Dt and D, is denoted by S .  The field 
point is represented byp which can be inside D, or De or on S, while the source point, 
q, is on S only. Based on potential theory (Gunter 1967; Burton & Miller 1971), the 
single-layer and double-layer potentials are, respectively, 

and 

where g is the density function. Assuming that CT is sufficiently continuous on S, as the 
field point p approaches the boundary S from Di or D,, the single-layer potential and 
the normal derivative of the double-layer potential are continuous across the 
boundary, 

v((.> Is = Vc) lint = Vg) lest, (A 3) 

where in (A 3) and (A 4), S, int and ext subscripts represent the limit values of a function 
of p for the cases of p E S, p --f S from D, and p --f S from D,, respectively, and np  is the 
outward normal to S at the field point p. However, the double-layer potential and the 
normal derivative of the single-layer potential are discontinuous as p crosses S. These 
discontinuities satisfy the following relations : 
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According to these fundamental relations, the modified conventional and hypersingular 
boundary integral equations with common points are derived as follows. 

A.l. Modijied CBIE with a common surface 
In view of the fact that the surface S is composed of a regular surface S,  and a common 
surface S +  n S -  (see figure lb), and on the common surface is imposed 

the CBIE (19) can be rewritten as, for p E Dt, 

As p approaches S +  from Di,  the discontinuity condition (A 6) requires that 

Thus, the integral along S+ in (A 7) becomes 

- 2X($+(P) - 4 7 P ) ) .  (A 9) 

The substitution of (A 9) into (A 7) yields the modified CBIE with a common surface 
S +  n S -  forpES+:  

aG(p' -Is+ ant; (qV(4) - $-(q)) dSt;. (A 10) 

ForpESb, the left-hand side of (A 10) becomes 27c$(p) and there is no change on the 
right-hand side. 

A.2. Modijied HBIE with a common surface 
A hypersingular integral equation with a common surface can be derived in a similar 
fashion. First, the directional differentiation of (A 7) with respect to I t p  with P E  Di 
yields 

Then, let np be an outward normal to the boundary S at the inner limit o fp  on S and 
pass the limit o fp  from D, along the normal np to the boundary S. From (A 5) ,  only 
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the derivative of the single-layer potential, the first integral in (A l l) ,  has a jump 
according to the relation 

while the other two integrals along sb and S+ in (A 11) Pte continuous according to 
(A 4). Thus, (A 11) becomes 

where c p  satisfies 

Appendix B. Derivation of the equation for the energy loss 

take the gradient of the pressure impulse equation (15): 
The first step in the analysis that demonstrates the energy loss due to impact is to 

V$“ = - vz/p -I- V$’, (B 1) 

where 4’ and 4‘‘ are the velocity potentials of any point inside the fluid domain at the 
instants just before and just after the impact, respectively. Next, the difference in the 
kinetic energy per unit volume before and after the impact, Ae,, is calculated by 
squaring (B 1) and rearranging the terms: 

Aek = ip(V$”)2 -ip(V$’)2 = - V I -  V$‘ + (VZ)’/2p. (B 2) 
Since the boundaries of the flow move only an infinitesimal amount over the time of 
the impulse, the total energy loss is found by integrating ek over the simply connected 
volume bounded internally by S,, S+ and S -  and externally by S, and S,: 

AE, = ekdV = -VZ.V$’dV+ (VZ)’/2pdV. (B 3) s, s, JD 
The first term on the right-hand side can be manipulated using the chain rule to obtain 

ID VZ.V$’dV = s, V.(ZV$’)dV-[DZVz$’dV. (B 4) 

The last term on the right in this equation is equal to zero since the flow field is 
incompressible before (and after) impact and D is a simply connected region. Using 
Gauss’s theorem and the fact that I = 0 on S, and S,, V@‘.n, = 0 on S,, and 
n- = -n+ and Z+ = I -  on the common surface, the first term on the right of (B 3) can 
be written as 

Z+(V($’)+ - V($’)-) - n+ dS. (B 5 )  
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The second term on the right of (B 3) can be manipulated in a similar manner. First, 
the chain rule is used to obtain 

ID (V1)2 d V = ID V - (A71) d V-  IV21d V. s, (B 6)  

The second term on the right of this equation is equal to zero since the Laplacian of 
the pressure impulse is zero in D, as can be seen by taking the divergence of (B 1). Using 
Gauss’s theorem, and the conditions Z = 0 on S ,  and s b ,  

VZ-n, = p(VqS-n,-V#’.n,) = 0 on S,  

(see (B l)), and I+ = I -  and n- = -n+ on the common surface, the first term on the 
right of (B 6) can be written 

JD v. (zvz) d v = Js+ I+(VZ+ - VZ->. n, dS. (B 7)  

This last integral can be further manipulated using (B 1) and the matching condition 
on the common surface (8) just after impact to obtain 

r r 

J v . ( ~ v I ) ~ V  = p J  1+(~($’)+-~(#’)->.n+dS. 
D S+ 

Finally, plugging (B 5)  and (B 8) into (B 3) the equation for the change in kinetic 
energy is obtained: 

Appendix C. Representation of the hypersingular integral equations in 
terms of elliptical integrals 

Assume a cylindrical coordinate system (r,  8, z), and let the three unit vectors in the 
r-, 8- and z-directions be denoted by e,, e, and e,, respectively. Assume that both the 
source point q(rq, 8,, z,) and the field point p(r,, 8,, z,) are on the surface S, and that 
8, = 0. Since the problem is axisymmetric about the z-axis, the two unit vectors 
representing the outward normals to Sb at p and q are given by n,(sin a,, 0, cos a,) and 
n,(sina,, 0, cos a,), respectively, where a, (or a,) is the angle between n p  (or n,) and the 
positive r-direction. With the above assumptions and definitions, (28) can be written as 

The above equation can also be written as 

a(G ‘OS Oq)] dS, (C 2) 
aG a2G(p’ ‘) dS, = Is [ - sin a - + cos a, S, an, an, ar, az, 

by using the relation V, G(p,  q) = - V, G(p,  4). This latter equation is easier to treat 
than (C 1) as r p  -+ 0. 
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The integral equations in $2 can be integrated analytically in the &direction and 
represented in terms of elliptical integrals. Introducing the elliptical integrals of the first 
kind K(m) and the second kind E(m) as 

E(rn) = ( 1  - rn2 sin p); dp, r 
where m2 = 4r, r , /A  and A = ( r ,  + r,)’ + ( z p  - z ~ ) ~ ,  the terms resulting from the 8- 
integrations in (21) are 

Zl = 4K(rn)/Ai7 (C 5 )  
Z, = [8(K(rn) - E(m))/m2 - ~ K ( ~ ) I / A : .  (C 6) 

Substituting these relations into (19) and (21) yields 

where L is an intersection curve between S, and the plane 0 = 0, and 

c,, = r q 4 ,  (C 9 )  
(C 10) 
(C 1 1 )  
(C 12) 

D,, = - rq aZ,/an,, 
Epq = rq ar1/anp7 

5, = - rq( - sin a, azJar, + cos a, az2/azq). 
With the relations 

the partial derivatives of Zl and la needed to calculate Dpq, E,, and Fpq can be expressed 
as follows 

aZ, - 4(z,  - zq) E(m) 
az, At( 1 - m2) ’ 
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